Investigation of the influence of solute-solvent interactions on the vibrational energy relaxation dynamics of large molecules in liquids.

نویسندگان

  • Anatolio Pigliucci
  • Guillaume Duvanel
  • Latévi Max Lawson Daku
  • Eric Vauthey
چکیده

The influence of solute-solvent interactions on the vibrational energy relaxation dynamics of perylene and substituted perylenes in the first singlet excited-state upon excitation with moderate (<0.4 eV) excess energy has been investigated by monitoring the early narrowing of their fluorescence spectrum. This narrowing was found to occur on timescales ranging from a few hundreds of femtoseconds to a few picoseconds. Other processes, such as a partial decay of the fluorescence anisotropy and the damping of a low-frequency oscillation due to the propagation of a vibrational wavepacket, were found to take place on a very similar time scale. No significant relationship between the strength of nonspecific solute-solvent interactions and the vibrational energy relaxation dynamics of the solutes could be evidenced. On the other hand, in alcohols the spectral narrowing is faster with a solute having H-bonding sites, indicating that this specific interaction tends to favor vibrational energy relaxation. No relationship between the dynamics of spectral narrowing and macroscopic solvent properties, such as the thermal diffusivity, could be found. On the other hand, a correlation between this narrowing dynamics and the number of low-frequency modes of the solvent molecules was evidenced. All these observations cannot be discussed with a model where vibrational energy relaxation occurs via two consecutive and dynamically well-separated steps, namely ultrafast intramolecular vibrational redistribution followed by slower vibrational cooling. On the contrary, the results indicate that both intra- and intermolecular vibrational energy redistribution processes are closely entangled and occur, at least partially, on similar timescales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational and Rotational Energy Relaxation in Liquids

Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing the intramolecular dynamics during photodissociation is investigated. The apparent agreement with quan...

متن کامل

Instantaneous Pair Theory for High–Frequency Vibrational Energy Relaxation in Fluids

Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motion in liquids, typically spanning no more than a few hundred ...

متن کامل

Volumetric and viscometric studies of -alanine in water and ammonia solution at 293- 313K: structure making and breaking effect

The physicochemical properties of solute in solutions provide valuable information on solute –solvent, solute – solute and solvent – solvent interactions. The intermolecular forces between theliquids molecules and solvent molecules affect the viscosity of the solution. Information regardinginter and intra molecular interactions can be obtained from volumetric, and viscometric data in asolute so...

متن کامل

Using Implicit/Explicit Salvation Models to Theoretical Study Tautomerism in 7H-purine-2, 6-diamine

A theoretical study at the B3LYP/6-31++G(d,p) level was performed on the tatumerization of 7H-purine-2, 6-diamine into 9H-purine-2, 6-diamine. Such a tautomerism can take place via three different pathways namely A, B, and C. The energetic results associated with the gas phase reveal that pathways A, B, and C display a very high activation Gibbs free energy of 45.1, 68.6 and 48.9 kcal/mol, resp...

متن کامل

How Does a Solvent Affect Chemical Bonds? Mixed Quantum/Classical Simulations with a Full CI Treatment of the Bonding Electrons

Understanding how a solvent affects the quantum mechanics and reactivity of the chemical bonds of dissolved solutes is of fundamental importance to chemistry. To explore condensed-phase effects on a simplemolecular solute, we have studied the six-dimensional two-electron wave function of the bonding electrons of the Na2 molecule in liquid argon via mixed quantum/classical simulation. We find th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 28  شماره 

صفحات  -

تاریخ انتشار 2007